Balanced vertex-orderings of graphs

نویسندگان

  • Therese C. Biedl
  • Timothy M. Chan
  • Yashar Ganjali
  • Mohammad Taghi Hajiaghayi
  • David R. Wood
چکیده

In this paper we consider the problem of determining a balanced ordering of the vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed to the left and right of v as possible. This problem, which has applications in graph drawing for example, is shown to be NP-hard, and remains NP-hard for bipartite simple graphs with maximum degree six. We then describe and analyze a number of methods for determining a balanced vertex-ordering, obtaining optimal orderings for directed acyclic graphs, trees, and graphs with maximum degree three. For undirected graphs, we obtain a 13/8-approximation algorithm. Finally we consider the problem of determining a balanced vertex-ordering of a bipartite graph with a fixed ordering of one bipartition. When only the imbalances of the fixed vertices count, this problem is shown to be NP-hard. On the other hand, we describe an optimal linear time algorithm when the final imbalances of all vertices count. We obtain a linear time algorithm to compute an optimal vertex-ordering of a bipartite graph with one bipartition of constant size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

Characterisations of intersection graphs by vertex orderings

Characterisations of interval graphs, comparability graphs, co-comparability graphs, permutation graphs, and split graphs in terms of linear orderings of the vertex set are presented. As an application, it is proved that interval graphs, cocomparability graphs, AT-free graphs, and split graphs have bandwidth bounded by their maximum degree.

متن کامل

A characterization of signed graphs with generalized perfect elimination orderings

An important property of chordal graphs is that these graphs are characterized by existence of perfect elimination orderings on their vertex sets. In this paper, we generalize the notion of perfect elimination orderings to signed graphs, and give a characterization for graphs admitting such orderings, together with characterizations restricted to some subclasses and further properties of those ...

متن کامل

A Characterization of Edge-Bicolored Graphs with Generalized Perfect Elimination Orderings

An important property of chordal graphs is that these graphs are characterized by existence of perfect elimination orderings on their vertex sets. In this paper, we generalize the notion of perfect elimination orderings to graphs with edge-colorings by two colors, and give an excluded-subgraph characterization for graphs with such orderings. As an application, we announce some forthcoming resul...

متن کامل

On vertex orderings and the stability number in triangle-free graphs

Given an ordering of the vertices of a graph one can construct a maximal stable set of that graph applying a simple greedy algorithm. By investigating certain conditions on the orderings of the vertices, N.V.R. Mahadev and B.A. Reed [5] characterized a class of graphs for which a maximum stable set and hence also the stability number can be computed in polynomial time in this way. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2005